

E-626-A
Real-Time Embedded Systems (RTES)

Lecture #1
Introduction to Embedded Systems

Instructor:

Dr. Ahmad El-Banna

Agenda

Course Objectives

Course Information

Introduction to Embedded System

Course Objectives

- Determine and analyze the concepts and principles of realtime systems and definition of embedded systems.
- Build/construct an embedded system around a PIC microcontroller with evaluating embedded system performance, correctness, and speed.
- Perform continuation of system performance evaluation.
- Conduct evaluation performance analysis.

Course Information

Instructor:	Dr. Ahmad El-Banna, http://bu.edu.eg/staff/ahmad.elbanna Office: Room #305 Email: ahmad.elbanna@feng.bu.edu.eg ahmad.elbanna@ejust.edu.eg		
Lectures:	Sunday, 12:30 -14:15 Lecture notes are found at: http://bu.edu.eg/staff/ahmad.elbanna-courses/12134		
Office Hours:	Sunday (14:15~15:30)		
T.A.:	Eng.		
Texts/Notes:	 John Catsoulis, Designing Embedded Hardware, 2005. Qing Li and Carolyn Yao, Real-Time Concepts for Embedded Systems, 2003. Michael Barr, Programming Embedded Systems in C and C++, 1999. 		
Assignments	 Assignment #1 (P1:P4), 7th week. Assignment #2 (P5:P8), 14th week. 		

Lectures List

Weeks 1:3

 Determine and analyze the concepts and principles of real-time systems and definition of embedded systems.

Weeks 4:7

 Build/construct an embedded system around a PIC microcontroller with evaluating embedded system performance, correctness, and speed.

Weeks 8:10

Perform continuation of system performance evaluation.

Weeks 11:14

Conduct evaluation performance analysis.

Week 15

Course close and feedback

INTRODUCTION TO EMBEDDED **SYSTEMS**

Examples of Embedded Systems

What's an Embedded System?

- An embedded system (ES) is a combination of computer hardware and software, and perhaps additional mechanical or other parts, designed to perform a specific function.
- A good example is the microwave oven. Almost every household has one, and tens of millions of them are used every day.
- Embedded system is a component within some larger system.
- For example, modern cars and trucks contain many embedded systems.
- If an embedded system is designed well, the existence of the processor and software could be completely unnoticed by a user of the device. Such is the case for a microwave oven, VCR, or alarm clock.

Embedded vs. Standalone Systems

- Embedded Systems is in direct contrast to the personal computer. It too is comprised of computer hardware and software and mechanical components (disk drives, for example).
- However, a personal computer is not designed to perform a specific function. Rather, it is able to do many different things.
- Many people use the term general-purpose computer to make this distinction clear.
- At the possible risk of confusing you, it is important to point out that a general-purpose computer is itself made up of numerous embedded systems.
- For example, the computer consists of a keyboard, mouse, video card, modem, hard drive, floppy drive, and sound cardeach of which is an embedded system.

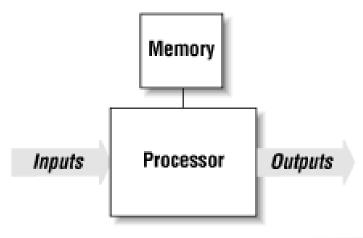
Real-Time Systems

- One subclass of embedded systems is real-time systems.
- As commonly defined, areal-time system is a computer system that has timing constraints.
- In other words, a real-time system is partly specified in terms of its ability to make certain calculations or decisions in a timely manner.
- These important calculations are said to have deadlines for completion.
- And, for all practical purposes, a missed deadline is just as bad as a wrong answer.

Hard and Soft Real-Time Systems

- The issue of what happens if a deadline is missed is a crucial one.
- For example, if the real-time system is part of an airplane's flight control system, it is possible for the lives of the passengers and crew to be endangered by a single missed deadline.
- However, if instead the system is involved in satellite communication, the damage could be limited to a single corrupt data packet.
- The more severe the consequences, the more likely it will be said that the deadline is "hard" and, thus, the system a hard real-time system.
- Real-time systems at the other end of this continuum are said to have "soft" deadlines.

Variations on the theme


- Unlike software designed for general-purpose computers, embedded software cannot usually be run on other embedded systems without significant modification.
- This is mainly because of the incredible variety in the underlying hardware.
- The hardware in each embedded system is tailored specifically to the application, in order to keep system costs low.
- As a result, unnecessary circuitry is eliminated and hardware resources are shared wherever possible.

A Generic Embedded Systems

- By definition all embedded systems contain a processor and software, but what other features do they have in common?
- Certainly, in order to have software, there must be a place to store the executable code and temporary storage for runtime data manipulation. These take the form of ROM and RAM, respectively.
- All embedded systems also contain some type of inputs and outputs. (u wave oven)

Design Requirements of ES

- Production cost
- Processing power
- Memory
- Development cost

- Number of units
- Expected lifetime
- Reliability

Criterion	Low	Medium	High
Processor	4- or 8-bit	16-bit	32- or 64-bit
Memory	< 16 KB	64 KB to 1 MB	> 1 MB
Development cost	<\$100,000	\$100,000 to \$1,000,000	> \$1,000,000
Production cost	<\$10	\$10 to \$1,000	> \$1,000
Number of units	< 100	100-10,000	> 10,000
Expected lifetime	days, weeks, or months	years	decades
Reliability	may occasionally fail	must work reliably	must be fail-proof

The range of possible values for each of the previous design requirements.

- For more details, refer to:
 - Chapter 1, Michael Barr, Programming Embedded Systems in C and C++, 1999.
- The lecture is available online at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
- For inquires, send to:
 - ahmad.elbanna@feng.bu.edu.eg

